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Abstract
A recently developed first-principles approach to the non-linear rheology of
dense colloidal suspensions is evaluated and its results compared to those from
simulations of sheared systems close to their glass transitions. The predicted
scenario of a universal transition of the structural dynamics between yielding
of glasses and non-Newtonian (shear-thinning) fluid flow appears well obeyed,
and calculations within simplified models rationalize the data over variations
in shear rate and viscosity of up to three decades.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The rheological properties of soft materials,such as colloidal dispersions, presumably originate
from a number of physical mechanisms, such as shear-induced phase transitions, direct
potential and hydrodynamic interactions, advection of fluctuations, and shear banding or
localization; see e.g. the collection of papers in [1]. At higher particle concentrations, the
non-linear rheology depends on how steady shearing interferes with solidification during
glass formation. Recently, we developed a theory for the non-linear rheology of dense
colloidal suspensions aimed at addressing this point [2]. It describes how the structural
dynamics is fluidized by advection of density fluctuations, while hydrodynamic interactions,
non-linear flow profiles, and ordering phenomena are neglected. Computer simulation studies
can ensure that the latter processes are absent and thus provide crucial tests of the scenario
presented. In this contribution, theoretical calculations will be compared to Brownian dynamics
simulations of hard spheres by Strating [3]—without an adjustable parameter in principle—
and to molecular dynamics simulations of a sheared binary Lennard-Jones mixture by Berthier
and Barrat [4].

3 Permanent address: Physik-Department, Technische Universität München, James-Franck-Str., 85747 Garching,
Germany.
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2. Theory

2.1. General aspects

A system of Brownian particles is studied in a prescribed steady-shear solvent flow with
constant velocity gradient and shear rate γ̇ . The equation of motion for the temporal evolution
of the many-particle distribution function is known [5], and has been solved for hard spherical
particles at low densities [6]. This model constitutes a first microscopic approach to real dense
colloidal suspensions, and may serve as a model sheared glassy fluid [7]. It considers the
‘Brownian part’ of the viscosity only, which, in Stokesian dynamics simulations, Foss and
Brady [8] found to dominate compared to the hydrodynamic one for small shear rates.

While the (approximate) approach developed in [2] gives general steady-state quantities
(such as the shear-distorted static structure factor) and their time-dependent fluctuations close
to glassy arrest, we will concentrate on the thermodynamicshear stress σ(γ̇ ) and the connected
shear viscosity η(γ̇ ) = σ/γ̇ + η∞; here η∞ is the viscosity of the background solvent. The
equations of motion exhibit a glass transition bifurcation, around which asymptotic expansions
capture the transition from shear-thinning fluid flow to solid-like yielding. With the separation
parameter ε denoting the (relative) distance from the transition, and t0 a timescale obtained
by matching to microscopic transient motion, the following behaviours of σ in the ‘structural
window’ have been established [2]:

σ = σ(γ̇ t0, ε) →




γ̇ t0|ε|−γ c1 ε < 0

c2(1 + c3|γ̇ t0|m) |ε| � |γ̇ t0| 2a
1+a

c2(1 + c4
√

ε) ε > |γ̇ t0| 2a
1+a ,

(1)

where the ci are positive material-dependent parameters (for the exponentsγ and a, see e.g. [9]).
The ‘structural window’, here, is defined as the double regime |ε| � 1 and |γ̇ t0| � 1,
where the slowing down of the structural dynamics dominates the steady-state stress. While
the divergence of the Newtonian viscosity η0 = t0|ε|−γ c1 (first line of equation (1)), upon
approaching the transition, applies to the linear response regime of a fluid (ε < 0), and is
known from mode-coupling theory (see the references in [9]), the novel predictions close to
and above (ε � 0) the transition describe the universal non-linear response of glasses to steady
shearing with rate γ̇ . Importantly, a ‘dynamic yield stress’ σ +(ε) = σ(γ̇ → 0+, ε � 0) is
obtained, because a finite stress has to be overcome in order to force the glass to yield even
for vanishingly small shear rate; σ + is connected to the constants c2 and c4 in equation (1).
While the yield stress varies strongly with distance to the transition deep in the glass, at fixed
parameters close to the transition, the stress increases from σ + with a power law in γ̇ , where
the material-dependent exponent m lies around 0.15 in the models studied below. The given
asymptotes are only the leading orders for ε → 0 and γ̇ t0 → 0, while corrections can be
obtained systematically [2], or are included in model calculations to be presented below.

The dominance of the structural dynamics in determining σ(γ̇ t0, ε) entails that all expo-
nents or constants are functions of the equilibrium structure factor Sq alone, except for the
timescale t0 which matches to shorter non-structural dynamics. Thus, hydrodynamic interac-
tions or inertial terms only influence the value of t0, which ideally could be determined from an
analysis of the intermediate-scattering functions of the system [9]. This result arises because
the small-shear-rate rheology of glassy suspensions is dominated by steric hindrance (the ‘cage
effect’) which is not qualitatively affected by the properties of the solvent around the particles.
This is in agreement with the finding in Stokesian dynamics simulations [8] that shear thinning
is dominated by a decrease of the Brownian part of the viscosity. The elimination of parti-
cle forces in favour of the quiescent-state structure factor Sq is an approximation of unknown
quality in the present situation, but is in part motivated by the consideration of small shear rates.
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2.2. Models and simplifications

The equations of motion, from which σ in equation (1) follows uniquely for a given Sq ,
have not been solved yet. Two approximate models were presented and discussed in [2]
and will be used in the following. While the schematic F (γ̇ )

12 -model only incorporates the
competition of two effects (divergent structural relaxation times with increasing ε and loss
of memory induced by shearing), the semi-microscopic ISHSM combines a semi-quantitative
description of a quiescent hard-sphere colloidal dispersion [9] with an isotropically averaged
shear advection of density fluctuations. Both models depend on only two parameters which
map onto ε and γ̇ introduced in equation (1), and thus can be viewed as minimal models for
the scenario described.

A problem when analysing data using either model arises from the ratio c2/c1 in
equation (1), which has a simple physical meaning. It gives the ratio of yield stress to
transverse elastic constant (namely the shear modulus G∞) of the glass at the critical point,
c2/c1 = ĉ1σ

+
c /Gc∞, where the numerical constant ĉ1 = 1.0 (1) for the ISHSM (F (γ̇)

12 ). This ratio
can be interpreted as a critical yield strain. Both models underestimate the effect of shearing
leading to σ +

c /Gc∞ = 0.33 (0.34) for the ISHSM (F (γ̇ )

12 ), while experiments give values around
0.05 indicating that smaller strains are necessary for yielding [10]. While the schematic F (γ̇ )

12 -
model is not meant to quantitatively capture such ratios, this error in the ISHSM presumably
arises from the oversimplified handling of the shear-induced anisotropy of density fluctuations.
The ISHSM treats all directions equivalent to the vorticity direction that is perpendicular to
the flow plane. Perhaps unsurprisingly, this underestimates the effects of shearing. We correct
for this error in an ad hoc fashion by rescaling the shear rate γ̇ when considering η(γ̇ ). For
the F (γ̇ )

12 -model this procedure is rigorously equivalent to an adjustment of the ratio σ +
c /Gc∞.

3. Results and comparison with simulation data

Before applying equation (1) to a solution of colloidal hard spheres at packing fraction φ, at
first the latter’s critical value, φc, entering in ε = C(φc − φ)/φc (with C = 1.5 [9]), needs
to be determined. This is done by testing whether the divergence of the quiescent viscosity
(and corresponding structural relaxation time) for ε → 0− is observed. The inset of figure 1
shows viscosities from experiments [11] and from Brownian dynamics simulations [3]. Also
included are self-diffusion coefficients from [12], which are predicted to vanish with D ∝ |ε|γ .
Replotting the data with the calculated γ = 2.62 [9], fits to the data above φ � 0.50 give
φc = 0.57 [12], 0.58, and 0.60 for D, η (two outliers neglected), and simulations, respectively.
Interestingly, the two experimental data sets provide rather close estimates for φc and indicate
a strong coupling of diffusion and viscosity, Dη → 0.4η∞D0 for ε → 0 (neglecting the
difference in φc), with D0 the dilute single-particle diffusion coefficient. The numerical factor
is about half the predicted value [9]. We speculate that the discrepancy of the extrapolation of
the simulation results arises in part because the data are not fully in the asymptotic regime.

With the quantitative knowledge of ε, only the matching time t0 is required to analyse
the steady-state viscosities in the structural window using the ISHSM. We chose to obtain it
via the full fitting procedure which consists in matching by eye the numerical solutions to
the non-Newtonian viscosity data. In this way, t0 is mainly determined by the increase of the
Newtonian viscosity, because η ∼ t0σ/(γ̇ t0) holds and σ/(γ̇ t0) becomes independent of t0
in the fluid for vanishing shear rate. The main panel of figure 1 shows η from the Brownian
dynamics simulations as function of the dimensionless Peclet number Pe0 = γ̇ d2/D0, which
measures the effect of shearing relative to the time taken for a single particle to diffuse over its
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Figure 1. Steady-state viscosities (symbols) from Brownian dynamics simulations [3] versus Peclet
number Pe0 = γ̇ d2/D0 for packing fractions φ as labelled. Fits by eye to the data for φ � 0.50
with the ISHSM for separation parameters −ε = 0.014, 0.058, 0.097, 0.139, and 0.174 are given
as solid lines and extrapolate to φc = 0.59. The matching time t0 = 0.019d3η∞/kB T is obtained
and the theoretical γ̇ is rescaled to 0.25γ̇ as discussed in the text. The inset shows a rectification
plot with predetermined exponent γ = 2.62 of viscosities from experiments [11] (circles) and
simulations [3] (squares), alongside self-diffusion constants (crosses) from [12], versus packing
fraction. Linear fits to the data above φ � 0.50 give (η/η∞)−1/γ = 1.2ε with φc = 0.58 (two
outliers neglected), (η/η∞)−1/γ = 1.6ε with φc = 0.60, and (DL/D0)

1/γ = 0.8ε with φc = 0.57.

diameter d . The fits by eye using the ISHSM are included for packing fractions close to the
transition, φ � 0.50. From the fits, mainly from the divergence of η0 given in equation (1), the
matching time t0 = 0.019d3η∞/kB T is estimated, and inclusion of corrections to asymptotic
behaviour in the ISHSM fits shifts the glass transition packing fraction closer to the other
determinations; φc = 0.59 follows from the ε used in figure 1. Note that the solvent viscosity
is included in the theoretical curves4, η = η∞ + t0σ/(γ̇ t0). In the shear-thinning region, the
viscosity diminishes and approaches a behaviour like η ∼ σ +

c /γ̇ , with strong corrections,
though, masking the power law [2]. Because of the overestimate of σ +

c in the ISHSM, this
decrease would set in at too high γ̇ -values only. In order to correct for the quantitative error, the
theoretical curves are plotted versus rescaled shear rate, γ̇ ∗ 0.25; i.e. σ/(γ̇ t0) = fη(γ̇ ∗ 0.25).
With this ad hoc correction, satisfactory agreement of theory and simulation results is seen for
Pe0 � 1, where the steady-state viscosity varies over two orders on variation of the shear rate
and packing fraction. For larger Peclet numbers, the data presumably lie outside the structural
window where equation (1) applies. Motivated by numerical findings in [2], we speculate
that the enhanced, φ-dependent steady-state viscosities around Pe0 = 1–10 in the Brownian
dynamics simulations originate from the hard-core repulsion. If so, hydrodynamic interactions
which prevent particles from close contact could appreciably affect η in this region.

A second set of steady-state shear stresses and viscosities is provided by recent large-scale
molecular dynamics simulations of a sheared simple liquid (a binary Lennard-Jones mixture)
above and below its glass transition temperature [4]. Because kinetic parameters do not enter

4 The ISHSM calculations provide σ(ε, γ̇ t0, Pe0) for all values of ε and Pe0, while equation (1) captures the
asymptotic behaviour for ε → 0, γ̇ t0 → 0, and Pe0 → 0. Because we aim at describing the proximity of the glass
transition, we match the parameters of equation (1) (φc and t0) there. Without matching, the ISHSM gives φc = 0.52
and t0 = 0.025d3η∞/kB T .
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Figure 2. Symbols represent shear stress (main panel) and viscosity (inset) data for a supercooled
Lennard-Jones binary mixture in reduced units taken from [4]; from top to bottom, the temperatures
are 0.15, 0.3, 0.4, 0.45, 0.5, 0.525, 0.555, and 0.6 while Tc ≈ 0.435. The solid curves give fits
obtained by eye using the F(γ̇ )

12 -model from [2] with separation parameters: ε = 0.050, 0.037,
0.021, 0.0, −0.027, −0.042, −0.054, and −0.083 (from top to bottom); the units are converted
using σ = γ̇ η = 1.8〈τ 〉γ̇ , where γ̇ = 0.53 Pe0, and 〈τ 〉 = 〈τ (ε, Pe0)〉 [2].

the theoretical predictions, and as linear flow profiles were obtained in the simulations, the
universal predictions of our approach can be compared again. Figure 2 shows stationary shear
stresses from the simulations and fits by eye using the F (γ̇ )

12 -model as specified in [2]. The
model provides a relaxation time 〈τ 〉 as a function of ε and a dimensionless shear rate, denoted
as the Peclet number Pe0, which are mapped onto the data as specified in the figure caption.
The data nicely span the glass transition temperature, Tc ≈ 0.435, already known [4], and
agree well with a transition from a shear-thinning fluid to a yielding glass with finite yield
stresses at and below the transition temperature.

4. Conclusions and outlook

We presented results of a microscopic theory of the non-linear rheology of colloidal fluids and
glasses under steady shear [2], and compared them with simulation and experimental data.
This brought out the existence of a universal transition between shear-thinning fluid flow, with
diverging viscosity upon increasing the interactions,and solid yielding, with a yield stress that is
finite at (and beyond) the glass point. Numerical calculations were able to explain simulation
results over up to three decades of variation in the shear rate and viscosity. A quantitative
analysis of larger data sets is required in order to determine the theoretical parameters for both
simulations more accurately than the estimates found here.

The approach that we outlined should be improved as regards the handling of shear-induced
anisotropies, and stress-induced effects. The latter may lead to shear-thickening behaviour that,
for many colloidal materials, occurs at higher flow rates than those addressed here. This avenue
will be explored in a future paper [13] on a version of the schematic model which is modified
to include explicit stress rate (as well as strain rate) dependence.
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